
Problems for AST558 seminars on �Introdution to Energeti Parti-les Physis in Magneti Fusion� by N.N. Gorelenkov (leture notes are herehttp://w3.pppl.gov/~ngorelen/leture_09vg_p1.pdf and the problems are herehttp://w3.pppl.gov/~ngorelen/leture_09prblms.pdf)Problem 1. Find the non - stationary alpha partile distribution funtion.Solve the kineti equation for alpha partile distribution funtion f (see p.16of the �rst leture) but with S0 = S0 (t) and allow for the time dependene ofthe distribution f = f (t, v):
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S0. (3)Then we will look for the solution using the harateristi method, in whihwe assume that t = t (v). For that let's write full derivative of F :
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. (4)By omparing Eq.(4) and Eq.(3) we �nd an equation for the harateristi t (v):
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Integrating it from v0 (1 − ǫ) to v0 (1 + ǫ) with ǫ → 0 we �nd that
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. (6)Note, that another way of solving Eq.(1) is given in Putvinski, Rev. ofPlasma Physis, v. 18.Problem 2. For the solution from 1. above �nd the riteria for thesoure evolution when the alpha partile distribution is stable in a homoge-neous plasma. That is when ∂f/∂v ≤ 0.Solution.We take derivative of f (v, t) from a previous problem and �nd that
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The last shear Alfven wave equation an also be rewritted in the form
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ξ⊥, (11)where vA is the Alfven speed.
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